Rotational Hyperfine Structure of CD₃I

J. Gadhi, G. Wlodarczak, J. Legrand, and J. Demaison

Laboratoire de Spectroscopie Hertzienne associé au C.N.R.S., Université de Lille I, France

Z. Naturforsch. 42a, 1241-1246 (1987); received June 3, 1987

The hyperfine structure of the ground state rotational spectrum of CD₃I is remeasured with a greater accuracy and reanalyzed. The determinability of the hyperfine constants is discussed.

Introduction

The ground state microwave spectrum of CD₃I was first analyzed by Kuczkowski [1]. Later Demaison et al. [2] have extended the measurements up to 320 GHz. They have also measured pure quadrupole resonances by laser-radiofrequency double resonance which enabled them to determine with accuracy the quadrupole coupling constant and one spin-rotation constant. They have also been able to point out the effects of the centrifugal distortion on the quadrupole hyperfine structure. Recently the measurements have been extended into the submillimeter region, up to 650 GHz [3] permitting to determine the sextic centrifugal distortion constants H_J , H_{JK} and H_{KJ} . Parallely to that work, Osipov and Grabois [4] have measured with great accuracy low J quadrupole transitions by microwave-radiofrequency double resonance. The hyperfine constants they have derived are much more accurate than those of [2, 3], but they are also somewhat different. As these authors do not give their frequency measurements, it is not possible to simultaneously fit all the experimental data in order to check the compatibility of the results. To circumvent this difficulty we have remeasured the hyperfine structure of some rotational transitions with an increased accuracy and we have performed a new analysis with emphasis on an accurate determination of the hyperfine constants.

Reprint requests to Dr. J. Demaison, U.F.R. de Physique, Bât. P5, Université de Lille Flandres Artois, 59655 Villeneuve d'Ascq Cédex, France.

Experimental

The sample of CD₃I was purchased commercially from FLUKA A.G. (Buchs, Switzerland) and was used without further purifications.

To determine accurate hyperfine constants it is necessary to measure very accurately the transitions

Some strong transitions (selection rule: $\Delta F = \Delta J = +1$) have been measured between 60 and 121 GHz with a Lamb dip spectrometer. This spectrometer is similar to a semiconfocal interferometer [5]: the propagation between a plane mirror and a spherical mirror is guided by two parallel plates. The spacing between the plates is 30 mm and the distance between the mirrors is 1 m. The microwave radiation propagates through the cell essentially in the TE₁ modes. It is possible to fit the width of these modes between 150 kHz and 1 MHz by adjusting the radius of the spherical mirror. The accuracy of the Lamb dip measurements is thought to be better than 10 kHz.

The $\Delta F = 0$ transitions are much weaker (about 0.2-0.1% of the intensity of the $\Delta F = +1$ components) but they are very sensitive to the hyperfine constants. A great number has been measured between 360 and 400 GHz with a source modulation spectrometer using a submillimeter BWO (Thomson) as source. The BWO is phase locked. Its power is optically focused through a free space absorption cell (length: 1 m) and detected by a He cooled InSb bolometer. After phase-sensitive detection, the signal is digitally averaged and processed by a microcomputer (Apple II E) which calculates the line frequency after digital filtering. The accuracy of the measurements is about $100 \, \text{kHz}$.

0932-0784 / 87 / 1100-1241 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen. On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

The other lines have been measured with a computer-controlled mm-wave spectrometer with superheterodyne detection [6]. This spectrometer permits measurements with very low pressure, hence with a good accuracy: between 20 and 50 kHz.

Theory

The frequency of a rotational transition J+1, $K \leftarrow J$, K may be written as [7]

$$v_0 = 2B(J+1) - 4D_J(J+1)^3$$

$$-2D_{JK}(J+1)K^2$$

$$+H_J(J+1)^3[(J+2)^3 - J^3]$$

$$+4H_{JK}(J+1)^3K^2$$

$$+2H_{KJ}(J+1)K^4.$$
(1)

The observed transitions exhibit hyperfine structure due to nuclear quadrupole and spin rotation interactions associated with the iodine nucleus in the molecule. These interactions are treated by perturbation theory. The resulting formula for the quadrupole energy is

$$E_{Q}(J, K, F) = \left\{ eq Q_{0} \left(\frac{3K^{2}}{J(J+1)} - 1 \right) + \chi_{J}J(J+1) + \chi_{JK}K^{2} + \chi_{K} \frac{K^{4}}{J(J+1)} \right\} Y(I, J, F) + E_{Q}^{(2)} \frac{(eq Q_{0})^{2}}{B} + E_{Q}^{(3)} \frac{(eq Q)^{3}}{B^{2}} , \qquad (2)$$

where eqQ_0 is the quadrupole coupling constant independent of molecular rotation; χ_J , χ_{JK} and χ_K are the centrifugal distortion constants introduced by Aliev and Hougen [8]; Y(I,J,F) is Casimir's function, $E_Q^{(2)}$ the coefficient of the second-order contribution, and $E_Q^{(3)}$ this of third-order contribution [9].

The third-order contribution of the quadrupole is significant for several lines and neglecting it gives a definitely worse fit.

The spin-rotation energy is, to first order,

$$E_{SR}(J, K, F) = -\frac{1}{2} \left[C_N + (C_K - C_N) \frac{K^2}{J(J+1)} \right] \times [F(F+1) - I(I+1) - J(J+1)] .$$
(3)

A sign convention consistent with [10] has been used. C_K is the principal value of the spin-rotation tensor along the symmetry axis, and C_N the principal value in the direction perpendicular to it.

Analysis

The measured transitions are listed in Table 1. First a weighted least-squares method was used to directly fit the frequencies of Table 1 and [1-3] to the parameters of (1), (2) and (3). The results of the fit are given in the first column of Table 2. The correlation coefficients are given in Table 3. All the parameters seem well determined. The least well determined constant is C_K for which $C_K/\sigma(C_K) = 5.6$. A statistical F-test (test of additional term [11] (see Appendix)) gives a large value for $F_{\gamma} = 31$, so it is clear that the inclusion of C_K improves the fit. However a fit with C_K fixed at the value of Osipov et al. [4] gives a reduced chisquares $\chi_{\nu}^2 = 0.472$ identical to the $\chi_{\nu}^2 = 0.472$ obtained when all the parameters are free. This indicates that the C_K of [4] is probably as good as ours. Our parameter C_K is compatible with the one of [4] within one standard deviation. The contribution of C_K to the frequencies is greater than 50 kHz for only 15 lines, and it is never greater than 100 kHz. As our best experimental accuracy is 10 kHz, this shows that only the order of magnitude of C_K may be determined. After C_K , the least well determined parameter is χ_K for which $\chi_K/\sigma(\chi_K) = 9.2$. But the contribution of χ_K to the frequencies is greater than 50 kHz for 28 lines and is greater than 100 kHz for still 8 lines. So it may be concluded that χ_K is slightly better determined than C_K .

On the other hand the constants χ_J and χ_{JK} seem to be incompatible. Indeed a fit with the hyperfine constants C_N , C_K , χ_J , χ_{JK} and χ_K fixed at the values of [4] (last column of Table 2) is worse ($\chi_{\nu}^2 = 0.613$ instead of 0.472). But the residues of only a few lines grow significantly. Although these

Table 1. Newly measured transitions of CD₃I (in MHz). To calculate the frequencies the constants of first column of Table 2 were used

useu.											
J	K	2 <i>F</i> ′′	2F'	exp.	ec.	\overline{J}	K	2 <i>F</i> ′′	2F'	exp.	ec.
4	0	13	15	60411.371	0.016	9	8	21	23	120682.683	0.020
4	0	11	13	60419.447	0.013	9	8	17	19	120674.647	0.018
4	0	9	11	60396.072	0.017	9	8	13	15	120842.868	-0.006
4	0	7	9	60369.688	0.003	9	9	21	23	120652.812	-0.006
4	0	5	7	60359.724	0.041	9	9	17	19	120644.970	0.021
4	0	3	5	60378.142	0.025	9	9	13	15	120858.139	0.021
4	1	13	15	60418.770	-0.024	29	0	59	59	362034.581	-0.001
4	1	11	13	60408.554	0.035	29	0	55	55	362294.090	-0.043
4	1	9	11	60385.826	0.007	29	1	57	57	362167.703	-0.042
4	1	7	9	60368.738	0.012	29	2	59	59	362022.704	-0.131
4	î	5	7	60370.136	0.019	29	2	55	55	362 278.849	0.029
4	î	3	5	60397.056	-0.007	29	3	55	55	362259.895	0.024
9	0	21	23	120796.518	-0.007	29	4	57	57	362116.127	0.031
9	1	19	21	120789.689	-0.007	29	5	61	61	361 821.327	0.044
9	1	15	17	120782.365	0.010	29	5	57	57	362085.277	-0.008
9	1	13	15	120787.419	-0.010	29	6	63	63	361 649.094	0.063
9	2	23	25	120794.998	-0.011 -0.025	29	6	59	59	361 926.509	0.082
9	2	21	23	120794.998	-0.023 -0.004	29	7	63	63	361 624.700	0.082
9	2	19	23	120789.344	0.004	29	7	59	59	361 887.630	0.034
9				120 782.847	-0.008			59 59			
	2	17	19			29	8		59	361 842.596	0.116
9	2	15	17	120780.663	-0.006	29	8	55	55	362051.674	-0.119
9	3	23	25	120796.042	-0.014	29	9	61	61	361 682.429	0.020
9	4	23	25	120797.500	-0.001	29	10	61	61	361 635.432	-0.027
9	4	21	23	120767.872	0.001	29	11	57	57	361 756.377	0.003
9	4	19	21	120755.531	0.010	29	12	55	55	361 749.099	-0.020
9	4	17	19	120758.176	0.012	29	14	61	61	361 398.439	-0.023
9	4	13	15	120800.454	-0.020	29	14	55	55	361 552.889	-0.039
9	5	23	25	120799.373	0.002	29	15	57	57	361 401 . 421	-0.111
9	5	21	23	120751.817	0.001	29	17	61	63	361 179.830	0.089
9	5	19	21	120735.077	-0.019	29	17	57	59	361 172.582	0.018
9	5	17	19	120742.538	0.018	29	17	53	55	361 200.596	0.005
9	5	15	17	120768.651	0.000	29	18	61	63	361 079.279	0.038
9	5	13	15	120808.334	-0.031	29	18	53	55	361 102.710	-0.062
9	6	23	25	120801.652	-0.005	29	19	53	55	360999.266	-0.004
9	6	21	23	120732.243	0.006	29	21	59	61	360731.308	-0.004
9	6	19	21	120710.019	0.009	29	21	53	55	360776.307	-0.006
9	6	17	19	120723.433	0.000	29	24	53	55	360401.854	-0.007
9	6	15	17	120762.371	0.004	32	12	63	63	397758.085	0.030
9	7	23	25	120804.327	-0.024	32	13	69	71	397 595.127	-0.115
9	7	21	23	120709.178	0.020	32	14	69	69	397 367.872	-0.053
9	7	17	19	120700.784	0.023	32	15	69	69	397 300.492	-0.036
9	7	13	15	120829.527	-0.045	32	15	61	61	397 522.656	0.082
						32	17	63	63	397 236.604	0.020

Table 2. Molecular constants of $CD_3I-\chi^2_{\nu}$: reduced chi-square. Standard errors in units of the last digit in brackets.

	Fit of the frequencies		Jackknife		Fit of the s	plittings	Other works		Ref.
B [MHz]	6040.297657	(114)	6040.297730	(126)			6040.29728	(38)	[3]
D_J [kHz]	3.722160	(185)	3.722127	(225)			3.72188	(30)	[3]
D_{JK} [kHz]	48.29460	(133)	48.29456	(133)			48.2963	(36)	[3]
$H_I[Hz]$	-0.001469	(48)	-0.001481	(69)			-0.00153	0(60)	[3]
H_{IK} [Hz]	0.03225	(91)	0.03224	(84)			0.03775	(192)	[3]
H_{KJ} [Hz]	1.0202	(36)	1.0200	(34)			1.0080	(63)	[3]
eqQ_0 [MHz]	-1928.983	(38)	-1928.984	(46)	-1928.973	(36)	-1928.9660	(27)	[4]
$\chi_I[kHz]$	0.938	(140)	0.933	(130)	1.241	(169)	2.19	(48)	[4]
χ_{JK} [kHz]	30.51	(122)	30.47	(109)	29.23	(137)	23.07		[4]
$\chi_K [kHz]$	-22.0	(24)	-21.80	(20)	-24.3	(26)	-14.3		[4]
C_N [kHz]	-14.34	(32)	-14.36	(37)	-14.32	(46)	-14.06	(19)	[4]
C_K [kHz]	-10.64	(190)	-10.67	(186)	-11.1	(26)	-8.64	(11)	[4]
Number of data	301		301		191				
$\chi^2_{\rm v}$	0.472				0.388				

Table 3. Correlation coefficients.

Fit of th	ne frequenc	ries										
B	1.000											
D_J	0.686	1.000										
D_{JK}^{σ}	0.392	-0.056	1.000									
H_J	0.581	0.961	-0.117	1.000								
H_{JK}	0.359	0.436	0.325	0.363	1.000							
H_{KJ}	0.077	-0.252	0.584	-0.245	-0.510	1.000						
eqQ_0	-0.022	-0.011	-0.006	-0.010	0.011	-0.022	1.000					
C_N	0.165	0.345	-0.112	0.330	-0.110	0.069	0.011	1.000				
C_K	0.069	0.052	0.121	0.050	-0.245	0.317	-0.019	-0.058	1.000			
χ_J	0.016	0.116	-0.045	0.114	0.072	-0.068	0.292	-0.097	0.063	1.000		
χ_{JK}	-0.007	-0.080	0.055	-0.081	-0.003	0.010	0.011	0.095	-0108	-0.738	1.000	
χ_K	-0.015	-0.009	-0.054	-0.003	-0.146	0.119	-0.261	-0.080	0.203	0.144	-0.490	1.000
Fit of th	he splittings	S										
eqQ_0	1.000											
C_N	0.009	1.000										
C_K	0.005	0.317	1.000									
χ_J	0.226	0.093	0.078	1.000								
χ_{JK}	0.004	-0.035	-0.041	-0.776	1.000							
χ_K	-0.252	0.018	0.113	0.194	-0.517	1.000						

lines are the most sensitive to the hyperfine constants, their residues are still lower than 3σ . So it is very difficult to draw any conclusion.

It is interesting to determine the parameters and their standard deviations by an independent method in order to check the validity of the results. We have used the jackknife technique [12-14] which seems well appropriate to our problem: The vector representing the unknown parameters may be written

$$x = f(y_1, y_2, \dots, y_n)$$
, (4)

where the y_i are the measurements (frequencies) supposed to form a sample of independent and identically distributed random variables. Let \hat{x} be an estimator of x based on the whole sample. The jackknife estimate is computed by dropping one of the measurements to give partial estimates:

Define
$$\hat{x}_i = m\hat{x} - (n-1)\hat{x}_{-i}$$
 $(i = 1, ..., n)$. (6)

The jackknife estimate of x is

$$\tilde{x} = \frac{1}{n} \sum_{i=1}^{n} \hat{x}_i = n\hat{x} - \frac{(n-1)}{n} \sum_{i=1}^{n} \hat{x}_{-i} , \qquad (7)$$

and the corresponding variance is

$$\sigma^2 = \sum_{i=1}^n \frac{(\hat{x}_{-i} - \tilde{x})^2}{n(n-1)} . \tag{8}$$

The drawback of this method is that it is very expensive in computer time. But in our particular case, although we have 301 data and 12 parameters, it is still acceptable: about 4 hours on a Macintosh + for a program written in FORTRAN (instead of 2 mn for the direct least-squares fit). The results are given in the second column of Table 2. It may be seen that the agreement is very good with the ordinary least-squares method.

The determination of the hyperfine parameters from a direct fit of the rotational transitions may be strongly affected by small systematic error measurements because the hyperfine contributions to the rotational frequency is only a small percentage of the frequency. To eliminate at least partially these errors it is possible to use the splittings between frequencies of hyperfine multiplets as input in the least-squares analysis. In this case the data are no more statistically independent but are correlated. The neglect of these correlations can lead to constants differing significantly from those obtained by the correct procedure and can also underestimate the rms errors of those constants [15]. Lees [16] has shown how the least-squares procedure should be modified: the diagonal weight matrix in the weighted least-squares procedure has to be replaced by a nondiagonal matrix \tilde{V}^{-1} , where \tilde{V} is the variance-covariance matrix for the data. The form of \tilde{V} depends on the choice of observable. The easiest procedure is to take the strongest component of each multiplet as the reference line v_0 , and take the differences between all other components and the reference as observables $y_i = v_i - v_0$. The variance-covariance matrix \tilde{V} is then block-diagonal, with a block associated with each multiplet. Its elements are

$$V_{ij} = \begin{cases} 2 \sigma^2 , & i = j \\ \sigma^2 , & i \neq j \end{cases},$$

where σ^2 is the variance of v_i and v_0 . It is to be noted that different multiplets may have different variances. \tilde{V}^{-1} has a very simple form which is very easy to calculate [16]. On the other hand if the individual lines of a multiplet have different measurement accuracies, the \tilde{V} matrix has to be inverted numerically. But this complex procedure was unnecessary in our case. The results of the correlated least-squares procedure are shown in the third column of Table 2 and the correlation coefficients in Table 3. The results are in very good agreement with those of the first two columns of Table 2, but the standard deviations are slightly higher. It could be simply due to the fact that the number of degrees of freedom is smaller: 191 data for 6 parameters versus, 301 data for 12 parameters in the first two cases. In fact if we randomly drop some data in the fit of the frequencies, the standard deviations increase too. Moreover if we correct the frequencies for the hyperfine interactions and then fit the unperturbed frequencies to the six parameters of (1), we get also higher standard deviations than those of the first column of Table 2 although we are sure in this case not to lose any information. But here again the numbers of degrees of freedom is smaller: 99 data for 6 parameters. As expected, neglecting the correlations between the experimental data increases significantly the standard deviation of the fit (26 kHz instead of 20 kHz) and modifies the values of some parame-

The eqQ_0 of Osipov and Grabois [4] is more accurate than ours. It is not surprising because these authors have accurately measured pure quadrupole transitions of low J, these transitions being the most sensitive to eqQ_0 . Their C_N and C_K are more accurate too. This may also be due to the great accuracy of their measurements. It is to be

noted that their $eq Q_0$, C_N and C_K are compatible with ours within one standard deviation. On the other hand their centrifugal constants χ_J , χ_{JK} and χ_K are different from ours. But their greatest J value was only 7 whereas ours is 32 and our greatest K value is 24, so our centrifugal constants are very likely better determined: for instance the maximum contribution of χ_J to the quadrupole transitions J=7 is only 9 kHz (19/2–17/2 component) whereas this contribution is greater than 100 kHz for 26 of our rotational transitions (and greater than 150 kHz for 8 rotational transitions).

Conclusion

The rotational hyperfine structure of CD_3I in this vibrational ground state has been analyzed by three different methods. They give results in very good agreement. So it may be concluded that the derived parameters are reliable, although some of them (C_K and χ_K) are not very accurate. Their accuracy could be improved by using pure quadrupole transitions, like those measured by Osipov and Grabois [4].

Appendix

We have n measurements y_i of standard deviation σ_i to be fitted to p parameters x_i . The column vectors x and y are related by the matrix equation [17]

$$y = Ax$$
.

The solution is

$$x = (\tilde{A} WA)^{-1} \tilde{A} Wy ,$$

where \tilde{A} is the transpose of A and W the weight matrix, with

$$W_{ij} = \sigma_{ij} \frac{1/\sigma_i^2}{(1/n) \Sigma(1/\sigma_i)} .$$

The χ^2 of the fit is [10]

$$\chi^2 = \sum_{i=1}^n \frac{\Delta y_i^2}{\sigma_i^2}$$
, where $y_i = y_i^{\text{exp}} - y_i^{\text{calc}}$,

and the reduced $-\chi^2$

$$\chi_{\nu}^2 = \frac{\chi^2}{n-p-1} .$$

If the model is appropriate for describing the data, than $\chi_{\nu}^2 \sim 1$. The formula for F_{χ} is

$$F_{\chi} = \frac{\chi^2(p-1) - \chi^2(p)}{\chi_{\nu}^2(p)}$$
.

 F_{χ} follows the F distribution and should be small when the model with p terms does not significantly improve the fit over the model with p-1 terms.

When the observables are correlated, the weight matrix W has simply to be replaced by the inverse \tilde{V}^{-1} of the variance-covariance matrix V [15]. These two matrices are block-diagonal, with a block of the form

$$V = \sigma^{2} \begin{pmatrix} 2 & 1 & 1 & \dots & 1 \\ 1 & 2 & 1 & \dots & 1 \\ \vdots & & & \vdots \\ 1 & 1 & 1 & \dots & 1 & 2 \end{pmatrix},$$

$$V^{-1} = \frac{1}{\sigma^{2}(n+1)} \begin{pmatrix} n & -1 & \dots & -1 \\ -1 & n & & -1 \\ \vdots & & & \vdots \\ -1 & -1 & -1 & n \end{pmatrix}.$$

- R. L. Kuczkowski, J. Mol. Spectrosc. 45, 261 (1973).
 J. Demaison, D. Boucher, G. Piau, and P. Glorieux, J. Mol. Spectrosc. 107, 108 (1984).
- [3] G. Wlodarczak, D. Boucher, R. Bocquet, and J. Demaison, J. Mol. Spectrosc. 124, 53 (1987).
- [4] B. D. Osipov and M. N. Grabois, Opt. Spektrosk. 60. 222
- [5] J. Legrand, B. Segard, A. Krosta, and B. Macke, Rev. Sci. Instrum. 49, 526 (1978).
- [6] J. Burie, D. Boucher, J. Demaison, and A. Dubrulle, J. Physique 43, 1319 (1982).
- [7] W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed., Chapt. 6, Wiley, New York 1984.
- [8] M. R. Aliev and J. T. Hougen, J. Mol. Spectrosc. 106, 110 (1984).

- [9] C. E. Miller, J. Mol. Spectrosc. 35, 170 (1970).
- [10] W. H. Flygare, Chem. Rev. 74, 653 (1974).
- [11] P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, Chapt. 10, McGraw-Hill, New York
- [12] R. G. Miller, Biometrika 61, 1 (1974).
- [13] B. Efron, SIAM Rev. 38, 1 (1982).
- [14] A. Kinsella, Amer. J. Phys. 54, 464 (1986).
- [15] D. L. Albritton, W. J. Harrop, A. L. Schmeltekopf, R. N. Zare, and E. L. Crowe, J. Mol. Spectrosc. 46, 67 (1973).
- [16] R. M. Lees, J. Mol. Spectrosc. 47, 286 (1973).
- [17] D. L. Albritton, A. L. Schmeltekopf, and R. N. Zare, in: Molecular Spectroscopy Modern Research (K. N. Rao Ed.), Vol. 2, Chapt. 1, Academic Press, New York 1976.